If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.3x^2-5x-2=0
a = 1.3; b = -5; c = -2;
Δ = b2-4ac
Δ = -52-4·1.3·(-2)
Δ = 35.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{35.4}}{2*1.3}=\frac{5-\sqrt{35.4}}{2.6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{35.4}}{2*1.3}=\frac{5+\sqrt{35.4}}{2.6} $
| 1748=23(p+35) | | 3/6=5/6x | | .2/x=1/x | | 7x-5=(2x+23) | | 7^y+2=4 | | 2.4x^2+3x-22=0 | | 3/5y+5=14 | | 3x+2=2/x+1 | | 1^2x-3=24 | | 4=7x-4(4x+17) | | -v3=-1+v | | 1.34+0.7=x | | 5(-2+2y)-5y=10 | | H(t)=-16t^2+104t+9 | | x^2+(2x-3)^2-170=0 | | k^2+k+19=0 | | 46=w+(2w-7) | | x^2+(2x-3)^2=170 | | 12=-2/5x | | H(t)=-16t^2+9 | | 2p^2+3p-10=0 | | 32-5x=17-2x | | (48+2x)=2x | | 10(17-p)=60 | | -5-5p=-35 | | 3(x-1)=6x-3(x+6) | | 10.5x+97.38=-9.5x+96.36 | | 2w^2-w-2=0 | | 3x-55x+7=0 | | 7x3.14=x | | 1.7t+8-1.62t=0.4t-0.32 | | -13x+7=3x-17 |